If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2-128=8v
We move all terms to the left:
3v^2-128-(8v)=0
a = 3; b = -8; c = -128;
Δ = b2-4ac
Δ = -82-4·3·(-128)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-40}{2*3}=\frac{-32}{6} =-5+1/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+40}{2*3}=\frac{48}{6} =8 $
| 10x-4+17x=7+15x+13 | | 20x-7-18x+4=16x-6-14x+13 | | 24k^2-40k=0 | | -2t^2+5t-8=-t-5 | | x/6-x/7=x/42 | | 4(8x+2)^2+320=0 | | 20x-7-18x+4=16-6-14x+13 | | x/6-x/7=x42 | | 100+10x=20+20x | | 15=3(m-8) | | 3^2x=5 | | 231=3.14(9)h | | 231=3.14(3^2)h | | 3=u-(-1)/2 | | (x+9)^2-2=0 | | 2(x^2-3)=x^2-12 | | 2(j+3)-2=18 | | 5{3x+13}=35 | | 2(x+6)^2+10=-10 | | 6k^2-70=k | | -4(g-19)+-14=-2 | | 3/8x-1/4=1/3 | | 7.4a+14.4=3.2a+86.4 | | 10=2(h-6) | | 7.4a+14.4=3.2a+86+4 | | x+(x+13)+(x2)=125 | | 2(s-4)=8 | | x^2+x^2-2x-15=165 | | 5.3a-7.9=2.6a2.9 | | 9(x—3)+8=4x-34 | | 2+x=90 | | v=3.147^2(12) |